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Abstract
Cryptocurrencies like Bitcoin provide probabilis-
tic assurances to merchants that payments made to
them will not be reversed. We extend the study
of payment-reversal (aka double spending) attacks
by considering more sophisticated behaviours of at-
tackers. We show that attackers who wish to re-
verse payments face a decision problem: at each
point in time, they must decide whether to con-
tinue the attack or to abandon it and launch a new
one. Merchants can use our computed optimal at-
tacks to set and adjust their transaction acceptance
policies. We analyze and compute optimal attack
policies for both single-shot attacks and long term
persistent ones. We show that when one consid-
ers the decision problem induced by long term at-
tacks, payments can be confirmed faster than previ-
ously thought, because an optimal attack involves
frequent resets of the attack.
Our analysis utilizes an MDP construction adapted
from [Sapirshtein et al., 2015].
Finally, we demonstrate how the attack strategy
changes if the merchant does not relay blocks to
other Bitcoin nodes, and show that relaying blocks
to others strictly improves the security of payments
accepted by the node.

1 Introduction
Bitcoin is a novel decentralized system, invented in 2008 by
Satoshi Nakamoto [Nakamoto, 2008], which allows users to
transfer money to one another by publicly recording pay-
ments made with the currency. Transactions are aggregated
in batches called blocks, and blocks in turn are sequentially
organized in a chain collectively known as the blockchain.
Once a transaction has been embedded in a block within the
chain, it will be considered a part of the valid history of
transactions. The security of a bitcoin transaction depends
directly, therefore, on the probability that the block contain-
ing it remains part of the blockchain forever. In this work
we show that this connection is more complex than com-
monly described, and we define precisely in what sense bit-
coin transactions can be considered secure. We show that

attackers face a decision problem, when aiming to reverse as
many payments as possible, and we compute optimal attack
policies using tools from AI.
The Bitcoin protocol. In order to create a new block, a node
(aka miner) is required to solve a difficult cryptographic puz-
zle. Each new block contains a pointer to its predecessor
– usually, the tip of the current chain – effectively extend-
ing it with every such additional block. The difficulty of the
puzzle regulates the block creation rate, and ensures that the
blockchain is extended approximately once every 10 minutes
(every 2016 blocks the difficulty of the puzzle is adjusted to
keep the growth rate of the chain constant).

In case several chains of blocks form, the Bitcoin protocol
dictates that nodes extend the longest chain only (or the one
they received first, in case of a tie), and discard and ignore
blocks outside this chain. In particular, if an attacker delib-
erately creates a secret fork and manages to create a longer
branch than the current public one, he can publish his branch
and thereby replace all blocks in the public chain (after the
fork), effectively reversing all payments embedded within
them. This scheme is called a double spending attack.

Fortunately, the computational hardness of block creation
ensures that a node with less than 50% of the computational
power is unlikely to create more blocks than the rest of the
nodes, over a long period of time. Consequently, (assuming
that blocks propagate much faster than their creation rate),
it is highly unlikely that a block buried deep enough in the
longest chain would later be removed. Merchants and pay-
ment recipients are thus advised to wait for several blocks
(aka confirmations) to extend the chain above the block con-
taining their transactions, before considering the payment as
finalized.
The classic security analysis. Satoshi in his original
work [Nakamoto, 2008], as well as additional works that fol-
low [Rosenfeld, 2014; Sompolinsky and Zohar, 2015], of-
fer several acceptance policies whose security guarantees are
given by a theorem of the following “flavour”:

Theorem 1 (informal). As long as the attacker holds less
than 50% of the computational power, the probability of a
transaction being reversed decreases exponentially with the
number of confirmations the block containing it has received.

For instance, a merchant who waits for 4 confirmations be-
fore accepting payments is safe against an attacker with 10%



of the computational power, with probability≈ 1−0.00099.1

Problems with the classic analysis. Alas, these analyses ap-
ply only when regarding naı̈ve attack strategies, where the
attacker tries to create a secret chain only after he broadcasts
the transaction to the network. In contrast, consider the fol-
lowing strategy of a 10% attacker against a merchant which
regularly waits for 4 confirmations: (i) The attacker continu-
ously tries to create secret extensions to the public chain and
to gain a lead of 2 blocks (in Bitcoin, he will usually be suc-
cessful within 24 hours or less);2 we term this preparatory
stage pre-mining. (ii) Once he gains such a lead, the attacker
broadcasts the transaction he aims to double spend. The mer-
chant waits for 4 confirmations to appear in the public chain,
and then accepts the payment. (iii) Meanwhile, the attacker
continues to try and extend his secret chain. (iv) If his chain
is longer than the public one at any moment in time after the
merchant accepted, he releases his secret chain. This strategy
is successful with probability ≈ 0.02728,1 i.e., it is 27 times
more likely to succeed than the attack considered by others.

It is easy to generalize this strategy and demonstrate that,
by controlling the timing of the publication of the victim
transaction, the attacker is able to guarantee himself an ar-
bitrarily high probability of success in reversing transactions.
Figure 1 illustrates such a pre-mining attack.

Admittedly, increasing the success-probability of the attack
comes at the expense of long waiting times before launching
it, and of wasting more blocks during the pre-mining stage.
However, security guarantees given in the above form (Theo-
rem 1) pretend to provide security even against irrational at-
tackers that do not necessarily aim at maximizing their profit.
Thus, pre-mining refutes a naı̈ve reading thereof.
Alternative security model. Still, these analyses prove that
in some sense it is (exponentially) difficult to reverse blocks,
and they can be correctly interpreted as follows:

On average, the attacker is able to reverse trans-
actions embedded in only an exponentially small
fraction of the blocks created within this period.

By the Strong Law of Large Numbers, there is an imme-
diate connection between the success-probability of a single-
shot attack and the fraction of overall successful ones: If an
attack carried out in an arbitrary point in time (with no se-
lective timing, as previous analyses assume) succeeds with
probability upper bounded by ε, then the overall fraction of
blocks reversed by a persistent attacker converges to a limit
upper bounded by ε.

However, by carefully considering the dynamics of a long-
run attack, specifically by modeling it as a decision problem,
we show that in fact it is possible to produce tighter security
guarantees that work in favour of the merchant. Indeed, an
attacker that attempts to maximize the fraction of attacked
blocks must actively decide when to give up on the attack on

1This calculation is obtained by adapting the formula
from [Rosenfeld, 2014]. In the original one, a pre-mining of 1 block
was assumed.

2At any given moment, the chance that the next 2 consecutive
blocks will be mined by the 10% miner is 0.12 = 0.01. In 24 hours
there are roughly 144 blocks, hence it’s likely that an event with
probability 0.01 will occur at least once, every 24 hours.

a specific block, if the odds are not in his favour, so that he
may attack other more recent blocks instead.

Using a Markov Decision Process (MDP), we precisely de-
fine the decision problem and the resulting security model
(see Section 2 and 3). We compute optimal attack strategies
using an adaptation of the MDP-based algorithm from [Sapir-
shtein et al., 2015].
Correcting the classic analysis. Arguably, the fractional “on
average” model suggested above fits a merchant that engages
frequently in bitcoin transactions best, and aims to minimize
the number of successful attacks over a long period of time.
In contrast, a merchant who uses the blockchain rarely, would
probably be focused on defending a payment in a specific
block, which corresponds to the security model suggested by
the classic analysis.

Unfortunately, as argued above, securing a specific trans-
action in the blockchain is problematic: The attacker can en-
gage in pre-mining efforts and wait until his lead ensures him
a definite success, and only then publish the payment to the
victim. Previous analyses which ignored this factor implic-
itly assume that the attack is carried out in an arbitrary point
in time. This assumption might be justified in some scenar-
ios, such as periodic and pre-scheduled payments, or when
the attacker is not the entity that initiated the payment.

Still, even under such assumptions, an attack may involve
pre-mining, which was not accounted for in previous analy-
ses. We correct this by evaluating the optimal attack analyt-
ically. As a separate contribution, we repeat this analysis for
the case where the merchant runs a lightweight “Simplified
Payment Verification” (SPV) node and does not relay blocks
that it receives to others in the network. We show that this
provides the attacker with an advantage, and adjust the anal-
ysis of the optimal attack strategy in this case.

Our contributions can be summarized as follows:

• We define precisely in what sense bitcoin transactions
can be considered secure, taking into account pre-
mining and selective timing of transaction publication.

• We use an MDP-based algorithm, adapted from [Sapir-
shtein et al., 2015], to provide tight upper-bounds on
optimal attack strategies. Merchants can use our results
and tools to reason about the security of their acceptance
policies and adjust them accordingly.

• We correct the classic analysis of Bitcoin’s security by
accounting for pre-mining. We do so both for ordinary
Bitcoin nodes and for merchants running lightweight
clients that do not broadcast blocks they receive. The
attacks we analyze are essentially a generalization of
the Finney attack [Finney, 2011], and of the (somewhat
lesser known) Vector76 [2011] attack.

Our results apply to other blockchain-based systems as
well, such as Ethereum [ETH, ; Wood, 2014].

2 The model
We adopt the original setup analyzed by Satoshi
Nakamoto [2008] that has become a standard model of
Bitcoin’s operation. The set of all miners creates blocks with
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Figure 1: The progression of a pre-mining attack on a 1-confirmation merchant. (1) The attacker starts working on a secret
chain with tx2 inside its first block. (2) If the attacker’s chain is shorter than the public one, the attacker gives up and restarts
the attack. (3) The attacker manages to gain a lead of 2 blocks. (4) He then transmits the transaction he wishes to double
spend, which is included in a block. The transaction gains enough confirmations (here k = 1), and the merchant delivers to the
attacker the commodity he paid for. (5) The attacker publishes his secret chain and successfully reverses the payment.

exponential inter-arrival times, with parameter λ (in Bitcoin,
λ = 1/600 blocks/second).

Each block contains a reference to a single predecessor
block (a cryptographic hash). The entire history of blocks
created up to time t (including blocks not in the longest chain)
thus forms a tree, which we denote by Tt. We assume that,
in accordance with the Bitcoin protocol, honest participants
only keep track of the longest chain they have been given. We
further assume that blocks propagate in the network very fast
relative to 1/λ; under this assumption the honest network’s
chain at every point t in time is uniquely determined, and we
denote it by Ct. The length of the chain at time t is denoted
height(Ct). The height of a block B, height(B), is defined
as the number of blocks between it and the first genesis block.

The attacker is assumed to own a fraction α of the com-
putational power, and the rest (1 − α) is owned by honest
nodes. Thus, the attacker creates blocks at a rate of α · λ, and
the honest participants at a rate of (1−α) ·λ. Following [Eyal
and Sirer, 2014], we assume that in case of a tie between the
attacker’s chain and the public chain, the attacker’s commu-
nication capabilities are such that a fraction γ of the nodes
receive his block first and adopt it; for such a race to take
place, the attacker must release his matching block immedi-
ately after the public chain has extended. A pair α, γ thus
characterizes the capabilities of the potential attacker against
which the merchant wishes to defend himself. For each such
pair, σα,γ denotes the merchant’s acceptance policy, i.e, the
(constant) number of confirmations the merchant waits for
before accepting the transaction.

ε-fractional-robust policies. Given an acceptance policy
σα,γ , we define the set At(σα,γ) := {B ∈ Tt \ Ct : ∃s < t
s.t. B ∈ Cs ∧ height(Cs)− height(B) ≥ σα,γ − 1}; it is
the set of blocks which were part of the longest chain at some
point in history, had σα,γ confirmations in it (including them-
selves), but were later removed from it due to a successful

attack. For simplicity, we assume that every block contains
one payment from the attacker to the merchant.
Definition 1. An acceptance policy σα,γ is said to be ε-
fractional-robust iff for any attacker with parameters α and
γ, and under any attack policy:

lim
t→∞

|At(σα,γ)|
|Ct|

< ε (1)

The space of possible attack policies will be defined in Sec-
tion 3. Importantly, note that |Ct| grows at a constant rate in
time: in Bitcoin, the chain is extended approximately once
every 10 minutes. Therefore, (1) essentially measures the
number of blocks attacked per unit of time, on average. Con-
sequently, in order to bound the overall damage a persistent
attacker can cause the merchant on average, the merchant
should cap the amount paid to him in each block, and use an
ε-fractional-robust acceptance policy.
ε-arbitrary-robust policies. Let tx be a transaction that ap-
pears in some block B in the blockchain. It is possible to
define the robustness of tx under the assumption that the at-
tacker was not involved in the choice ofB, or, in other words,
that the attack was performed in an arbitrary point in time.
Definition 2. An acceptance policy σα,γ is said to be ε-
arbitrary-robust iff for any attacker with parameters α and
γ, and under any attack policy:

Pr (∃s > t : B /∈ Cs | height(Ct)− height(B) = (2)
σα,γ − 1) < ε,

where B ∈ Ct is a block in the chain whose choice was inde-
pendent of the attacker’s actions.

3 A persistent attack as a decision problem
We are now ready to formalize the decision problem that
the attacker faces, and describe how we compute the opti-



mal policies. The attack is carried out over the entire his-
tory of blocks mining. We assume that every block contains
one payment from the attacker to the merchant; this is pos-
sible, e.g., if the merchant is an online currency exchange.
The attacker’s goal is to carry out as many successful double-
spending attacks as possible, by overriding the public chain
after payments in it were confirmed by the merchant. At each
step, he needs to decide whether to extend his secret chain, to
publish it, or to abandon it and begin a new one. A successful
attack takes place whenever the attacker publishes its secret
chain, this chain is longer than (or sometimes, equal to) the
public chain, and the public chain is at least k blocks long;
indeed, without the latter condition, the merchant hasn’t ac-
cepted yet any payment in the public chain, hence overriding
it does not harm him.

3.1 The underlying Markov Decision Process
We follow [Sapirshtein et al., 2015] and define the attacker’s
attack policy as a function that determines his action at every
possible state. A state of the MDP is characterized mainly
by la, the length of the attacker’s secret chain, and by lh, the
length of the public chain; these lengths are counted from the
latest block which both chains agree on. The possible actions
are:

• adopt– abandoning the current secret chain, so that fu-
ture chains of the attacker will contain the current tip of
the public chain.

• override– publishing the current secret chain, in case it
is longer than the public one, thereby overriding it.

• match– publishing the current secret chain, in case it is
the same length as the public one; by our model (follow-
ing [Eyal and Sirer, 2014]), a fraction γ of the honest
nodes will adopt the attacker’s chain.

• wait– waiting for the next block creation without any
additional action.

Every state-transition corresponds to the creation of a new
block, either by the attacker (with probability α) or by an
honest node (with probability 1−α). In case of a match, the
next block will extend the attacker’s chain with probability
α + γ · (1 − α), because apart from the attacker there is ad-
ditionally a fraction γ of honest nodes that adopts his chain.
Since the attacker can only match on time if the new block
was created by an honest node (otherwise all honest nodes re-
ceived the honest block first and adopted it), we must encode
this information in the state as well. The state is therefore
represented by a 3-tuple (la, lh, fork), where fork might
take the values rel, irrel, and active; rel implies that the
match action is now feasible (i.e., the last block was created
by an honest node hence the attacker can publish immediately
a matching chain), irrel implies that match is currently in-
feasible, and active means that the attacker already matched
previously and the honest nodes are already split between his
chain and the previous honest chain.

To compute an optimal attack correctly, one must normal-
ize by the length of the chain, as in (1), and not by the to-
tal number of blocks, because in the long run only the chain
growth is kept constant (via adaptation of the block creation
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Figure 2: The fraction of accepted blocks that an optimal at-
tacker can double spend, on average, against the acceptance
policy σ ≡ 6, as a function of the attacker’s hashrate α.
The different curves correspond to different values of γ. The
probabilistic bound under the classic model (from [Rosen-
feld, 2014]) is also plotted for comparison.

rate). We adapt a technique from Saprishtein et al. who de-
fine a reward system with two coordinates, and use a binary-
search-based algorithm to compute the optimal policy. We
refer the reader to [Sapirshtein et al., 2015], for a more com-
prehensive description. A succinct representation of the tran-
sition and reward matrices appears in Table 1 below.

The main difference from Sapirshtein et al.’s algorithm is
that the latter used this technique to compute optimal self-
ish mining attacks, and to maximize the number of attacker
blocks in the chain. In contrast, we reward the attacker differ-
ently (as its objective here is different): he is rewarded 1 unit
for every block that the merchant accepted – i.e., that had k
confirmations – and that was later removed from the chain.

3.2 Results
We constructed the MDP described above, for various ac-
ceptance policies of the merchant, truncating the state-space
to consider chains of length up to 50 blocks. We used the
MDP solver from [Chadès et al., 2014], where we utilized
the relative value iteration routine to obtain the optimal av-
erage reward under an undiscounted average reward scheme.
The value of the optimal attack, as computed by the MDP al-
gorithm, defines the degree of fractional-robustness achieved
by the corresponding acceptance policy. Table 2 presents the
average percentage of blocks that the attacker is able to suc-
cessfully attack, for several numbers of confirmations. Each
cell was computed separately with its own optimal policy. A
merchant willing to tolerate a fraction ε of successful double-
spends, against an attacker with computational power at most
α, should choose an acceptance policy such that the corre-
sponding cell in the table is ε or less.

Figure 2 depicts the ε-fractional-robustness of the policy
σα,γ = 6, as computed by the algorithm, for different γ’s.
The results of Rosenfeld for the success-probability of an at-



Table 1: The transition and reward matrices of the MDP. The first coordinate of ’Rewards’ accumulates the attacker’s rewards,
and the second one is used for proper normalization.

State (from) × Action State (to) Probability Reward

(la, lh, ·), adopt
(1, 0, irrel) α

(0, lh)(0, 1, irrel) 1− α

(la, lh, ·), override†
(la − lh, 0, irrel) α

(lh − k + 1, k)§
(la − lh − 1, 1, rel) 1− α

(la, lh, irrel), wait
(la, lh, rel), wait

(la + 1, lh, irrel) α (0,0)
(la, lh + 1, rel) 1− α (0,0)

(la, lh, active), wait
(la, lh, rel),match

‡

(la + 1, lh, active) α (0,0)
(la − lh, 1, rel) γ · (1− α) (lh − k + 1, k − 1)¶

(la, lh + 1, rel) (1− γ) · (1− α) (0,0)
†Feasible only when la > lh.

‡Feasible only when la ≥ lh. §If lh < k − 1, then the reward is (0, lh + 1) since no block was
actually attacked. ¶If lh < k − 1, then the reward is (0, lh).

α\conf 1 2 3 4 5 6 7 8 9 10
2% 0.08% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0%
6% 0.69% 0.12% 0.03% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0%

10% 1.89% 0.52% 0.16% 0.05% 0.02% ≈ 0% ≈ 0% ≈ 0% ≈ 0% ≈ 0%
14% 3.70% 1.34% 0.53% 0.23% 0.10% 0.05% 0.02% ≈ 0% ≈ 0% ≈ 0%
18% 6.16% 2.75% 1.34% 0.69% 0.36% 0.20% 0.11% 0.06% 0.04% 0.02%
22% 9.37% 4.92% 2.80% 1.66% 1.02% 0.64% 0.41% 0.27% 0.18% 0.12%
26% 13.47% 8.12% 5.34% 3.63% 2.52% 1.78% 1.28% 0.92% 0.67% 0.49%
30% 18.71% 13.20% 9.63% 7.19% 5.48% 4.23% 3.30% 2.60% 2.07% 1.66%
34% 26.46% 20.57% 16.36% 13.29% 10.99% 9.17% 7.69% 6.49% 5.51% 4.71%
38% 36.54% 31.04% 26.95% 23.60% 20.77% 18.37% 16.39% 14.66% 13.16% 11.84%
42% 50.32% 46.42% 42.99% 39.91% 37.17% 34.73% 32.49% 30.43% 28.56% 26.84%
46% 69.53% 67.65% 65.84% 64.06% 62.33% 60.64% 59% 57.38% 55.79% 54.23%
48% 81.48% 80.59% 79.66% 78.72% 77.75% 76.77% 75.76% 74.73% 73.67% 72.59%
50% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 2: The fraction of the network’s blocks that an attacker with a given hashrate (α) successfully attacks, when using an
optimal attack policy, given the number of confirmations the acceptance policy waits for (conf ).

tack on a single block are included for comparison. Interest-
ingly, the fraction of blocks that can be attacked, in the long
term, is in fact lower than implied by Rosenfeld. This is be-
cause his analysis (and Satoshi’s as well) considers an attack
on a single block that goes on infinitely—the attacker is as-
sumed to never give up and to try to catch up with the chain
no matter how far behind he is. In contrast, an attacker that
aims to maximize the fraction of blocks he successfully at-
tacks must occasionally give up and restart the attack if he is
far behind. This effect is demonstrated in these results (note
that, on the other hand, our model allows the attacker to dou-
ble spend several blocks at once. The effective ε is lower
nonetheless). A similar effect occurs under different sizes of
attacker or different numbers of confirmations.

3.3 Optimal attack policies

We now present the optimal attack policies returned by the
algorithm, in two particular setups. Tables 3,4 describe the
attack policy for an attacker with α = 0.25 and with γ = 0
or γ = 0.5. The row numbers correspond to the length of the
attackers branch la and the columns to the length of the honest
network’s branch lh. Actions are abbreviated to their initials:
adopt, override,match,wait, while the token ‘∗’ represents
an unreachable state. When γ > 0 thematch action becomes
feasible (see Table 1). Accordingly, each entry in the bottom

table contains a string of three characters, corresponding to
the possible values of the fork variable.

Notice that here the attacker does not override the net-
work’s chain until the honest branch is of length 2 or more,
as a successful attack requires that the merchant sees 2 con-
firmations above his transaction before the attack is released.
Note further that the attacker does not give up on his attack
when he is just slightly behind. If his chain is relatively long,
he will not abandon it unless he is at least 2 blocks behind.

4 Revisiting the classic security analysis
As discussed in previous sections, a merchant can consider a
specific payment in the blockchain as secure if he is willing
to assume that the attack was carried out in an arbitrary point
in time. Using this (implicit) assumption, previous works an-
alyzed the security of a transaction tx in terms of the proba-
bility that the block containing it, B, will not forever remain
in the blockchain; i.e., in terms of Definition (2).

However, even under this assumption, the attacker can still
engage in pre-mining, and try to gain an early advance be-
fore B’s creation. Previous works that analyze the security
of payments do not take this into account (with the exception
of [Pass et al., 2016]; see Section 6), and we thus correct the
analysis. Our main result (Lemma 1) is a probability distribu-
tion over the lead that the attacker may have at the time of the



la\lh 0 1 2 3 4 5 6 7 8 9
0 w a ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 w w w a ∗ ∗ ∗ ∗ ∗ ∗
2 w w w w a ∗ ∗ ∗ ∗ ∗
3 w w w w w w a ∗ ∗ ∗
4 w w w o w w w a ∗ ∗
5 w w w w o w w w a ∗
6 w w w w w o w w w a
7 w w w w w w o w w w
8 w w w w w w w o w w
9 w w w w w w w w o w

Table 3: Optimal actions for an attacker with α = 0.25 and
γ = 0, against the acceptance policy σ ≡ 2 confirmations
(see also caption of Table 4).

la\lh 0 1 2 3 4 5 6
0 w∗∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
1 w∗∗ ∗w∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗
2 w∗∗ ww∗ wm∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗
3 w∗∗ ww∗ www wm∗ w∗∗ a∗∗ ∗∗∗
4 w∗∗ ww∗ www wmw wm∗ w∗∗ a∗∗
5 w∗∗ ww∗ www www omw wm∗ w∗∗
6 w∗∗ ww∗ www www ∗ww omw wm∗

Table 4: Optimal actions for an attacker with α = 0.25 and
γ = 0.5, against the acceptance policy σ ≡ 2 confirmations.
The row and column indices correspond to la and lh, respec-
tively. See legend in text.

creation of B, which terminates the pre-mining attack stage.
Using this result, we proceed to calculate in Theorem 2 the
probability defined in (2), by augmenting and correcting the
analysis from [Rosenfeld, 2014]:
Lemma 1. Let B be an arbitrary block in Ct, and denote by
(la, lh) the respective lengths of the attacker and the public
chain at the time of B’s creation. Then, for any l ≥ 0, under

the optimal attack policy: Pr (la − lh = l) = 1−2·α
1−α ·

(
α

1−α

)l
.

Theorem 2.

Pr
(
∃s > t : B /∈ Cs | height(Ct)− height(B) = k − 1

)
=

∞∑
l=0

1− 2 · α
1− α

·
(

α

1− α

)l
·(

k−l∑
m=0

(
m+ k − 1

m

)
· αm · (1− α)k ·

(
α

1− α

)k+1−m−l

+

∞∑
m=k−l+1

(
m+ k − 1

m

)
· αm · (1− α)k

)
The proofs of Lemma 1 and Theorems 2-4 appear in the

full version of the paper. Table 5 shows the difference be-
tween the corrected analysis and the original one, for an at-
tacker with α = 0.3. The uncorrected analysis is a variation
of Rosenfeld [2014]. This result can be used by merchants to
correctly choose ε-arbitrary-robust acceptance policies.

5 The Generalized Vector76 Attack
In this section we present the Generalized Vector76 attack.
The attack is aimed against lightweight clients, which typ-
ically keep track of the longest chain of blocks but do not
relay blocks they receive to other nodes. As a result, even
if the chain held by such a node is the longest one, it is not
necessarily published—the chain could have originated from
an attacker node which hasn’t broadcast it yet.3 The attack
proceeds as follows:

1. The attacker starts working on a secret branch of the
chain. It embeds the transaction tx1 (that it later wishes
to reverse) in its first block.

2. If the merchant requires σ ≡ k confirmations, the at-
tacker needs to build an additional k − 1 blocks on top
of the one containing tx1 (for a total of k confirmations).
He attempts to do so in secret.

3. If his branch of the chain is longer than that of the public
chain, at some point after he has k confirmations for tx1,
he shows the k confirmations to the lightweight client
which then accepts it as the legitimate chain, since it is
the longest one.

4. The attacker then transmits a conflicting transaction tx2
to the public network. As the honest network is not
aware of the attacker’s chain, the public chain will grow
long enough for tx2 to be accepted by all nodes (and
eventually even by the attacked one).

Figure 3 depicts the attack. Again, notice that a crucial
stage in the success of the attack is that the honest network
does not adopt the block containing tx1.

The following theorem states that a merchant running a
lightweight Bitcoin node is less secure than a full node:
Theorem 3. Let ε > 0. If σα,γ is an ε-fractional-robust
policy for a non-relaying Bitcoin node, then there exists an
0 < ε′ < ε such that σα,γ is an ε′-fractional-robust policy for
a full Bitcoin node.

Fortunately, we can still upper bound the success-
probability of attacks on lightweight clients, using
the following acceptance policy. Let σspvα,γ :=
min {k ∈ N : g(k, α) < ε · (1− α)}, where g(k, α) :=

1− 2 · α
1− α

·
∞∑
l=0

(
α

1− α

)l
·

(
k+l∑
n=0

(
n+ k − 1

n

)
· αk · (1− α)n

+

∞∑
n=k+l+1

(
n+ k − 1

n

)
· αn−l · (1− α)k+l

)
.

Theorem 4. For any ε > 0, the policy σspvα,γ is ε-fractional-
robust, even when run by a non-relaying Bitcoin node.

6 Related work
Since Satoshi’s analysis in his white paper, several works
have dealt with correcting and extending his analysis [Som-
polinsky and Zohar, 2015; Garay et al., 2015; Karame et

3A simpler version was suggested by a user named Vector76
in the bitcoinTalk forums to possibly explain a successful double
spending attack against the MyBitcoin e-wallet [Vector76, 2011].



# conf : 1 2 3 4 5 6 7 8 9 10
without pre-mining 0.3086 0.2330 0.1801 0.1412 0.1117 0.0891 0.0714 0.0575 0.0465 0.0376

with pre-mining 0.5069 0.3932 0.3097 0.2463 0.1973 0.1588 0.1283 0.1040 0.0846 0.0688

Table 5: The success-probability of an attack on an arbitrary block, for an attacker with α = 0.3, γ = 0, with and without pre-mining.
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As the attack begins the attacker starts working on a significant secret chain with tx1 inside its first block (1). If the attacker’s
chain is too far behind it may restart the attack (2). The attacker manages to gain a lead of 1 blocks, but has the two confirma-
tions on his tx1 needed to convince the victim (3). He then reveals the secret chain to the victim (that does not relay it), and
collects an item in exchange. He then transmits the double spending transactions tx2 to the network which is then included in
a block (4). The network continues to mine atop tx2 and it eventually prevails (5).

Figure 3: The progression of a generalized Vector76 attack on a 2-confirmation merchant

al., 2012]. Rosenfeld [2014] goes on to correct the analy-
sis, and includes the pre-mining of a single block before it
is launched. An important work of Pass et al. [2016] proves
formally that a double-spending attack fails eventually even
when considering pre-mining; in comparison, we provide the
precise distribution over the pre-mining lead, which can be
used by merchants to choose correct acceptance policies.

In the full version of this paper, which will be made avail-
able online, we investigate the selfish mining and double
spending strategies that maximize the attacker’s utility. In
contrast, the focus of our work is to define a security model
assuming an arbitrary possibly irrational attacker, which pro-
vides us with worst-case security guarantees for bitcoin trans-
actions. This difference in the objectives yields different de-
signs of the MDP, both of which are extensions of [Sapir-
shtein et al., 2015]. The latter provided an algorithm to derive
optimal block withholding attacks, improving upon a scheme
by Eyal and Sirer [2014]. Our work uses similar techniques to
quantify the optimal fraction of successfully attacked blocks.
The problem of selective-timing of attacks, the fractional se-
curity model, and the resulting decision problem that the at-
tacker faces—were not discussed in previous works on this
topic.

Other AI-related works on Bitcoin include [Babaioff et al.,
2012] on the incentives to share transactions, [Lewenberg et
al., 2015] on game-theoretic dynamics of miners’ coalitions,
[Eyal, 2015] on a game where some mining nodes sabotage
other nodes’ mining efforts, and more [Rosenfeld, 2011; Luu
et al., 2015; Johnson et al., 2014].

7 Conclusion

In this work we provided a formal security model for bitcoin
transactions. We demonstrated that it is not enough to ana-
lyze blocks’ robustness, namely, the probability that a given
block remains forever in the longest chain. Indeed, an at-
tacker can selectively embed transactions in blocks whenever
the conditions are in his favour. Specifically, he can wait for
his secret pre-mined forks to obtain a sufficient lead over the
public chain, before carrying out the attack.

In our fractional security model, transactions are secure if
the attacker cannot reverse a significant portion of them. We
devised an algorithm to compute the worst-case attacker, un-
der this model. The resulting analysis is more tight, as an
attacker must trade-off his current attack with future ones.

We additionally revisited the classic security model which
assumes that the attack is carried out in an arbitrary point in
time (which was not controlled by the attacker). We’ve shown
that transactions are less secure than previously claimed, due
to the pre-mining attack stage.

Finally, we’ve formalized the Vector76 attack, which
proves that Bitcoin nodes that do not relay blocks can more
easily be defrauded—an attacker can feed to such a node a
chain of blocks which will not become part of the public
chain. Thus, such nodes need to wait longer in order to meet
the same level of security as full nodes which do relay blocks
to their peers.
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