
How to Pick Your Friends
A Game Theoretic Approach to P2P Overlay Construction

Saar Tochner and Aviv Zohar
The Hebrew University of Jerusalem, Israel

{saart, avivz}@cs.huji.ac.il

Abstract

One major limitation of open P2P networks is
the lack of strong identities that allows any
agent to attack the system by creating many
false personas. Such attacks can be used to
disrupt the overlay network’s connectivity and
to sabotage its operation. In this paper, we
explore practical ways to defend P2P networks
from such attacks. To do so, we employ a game
theoretic approach to the management of each
peer’s list of known nodes and to the overlay
construction mechanisms that utilize this list.
We consider the interaction between defender
and attacker agents as a zero-sum game. We
show that the cost of attacks can be driven up
substantially if the defender utilizes available
information about peers it chooses to connect
to such as their IP address. In addition to the-
oretical analysis of the underlying game, we ap-
ply our approach to the Bitcoin P2P network
and derive effective strategies that guarantee a
high safety level.

1 Introduction
P2P networks are used as an underlying communication
layer in many applications such as Bitcoin [Nakamoto,
2008], BitTorrent [Norberg, 2009], and DHTs [Urdaneta
et al., 2011]. Unfortunately, they are extremely suscep-
tible to isolation attacks in which individual nodes that
wish to participate in the network connect only to at-
tackers and are effectively quarantined from all other
honest participants. Attackers can then distort the view
of nodes regarding events in the network, filter their mes-
sages, change, or delay them at will.

Attacks of this sort give attackers great power. One
prominent example, is the Bitcoin protocol [Nakamoto,
2008], in which isolated nodes can have their computa-
tional power subverted to attack the rest of the network,
or may be blocked from issuing transactions.

The general mechanisms through which P2P clients
choose their connections may vary, but most use the fol-
lowing general technique: once an initial connection is
established with a node (usually with the help of some

centralized server that helps to bootstrap the process)
nodes share the IP addresses of others with their connec-
tions, and maintain lists of possible peers to connect to.
Such potential connections are stored in buffers and are
exchanged often to keep the lists populated with ”fresh”
addresses. The important decisions to be made are how
to select which nodes to evict from a full buffer, and
which nodes to connect to.

A naive approach is to form connections to random
nodes in the buffer (as random graphs are typically well
connected) and to evict nodes uniformly at random from
the buffer if it is overflowing. Other approaches that
have been used are to remove the oldest IPs assuming
they are the ones most likely to be stale. Attackers can
take advantage of such policies to replace all IPs in the
buffer of the victim with IPs of attacker nodes (or with
un-assigned IP addresses). The defender will thus fail to
connect to other honest nodes and will be quarantined
by the attacker.

Bitcoin itself employs a more sophisticated eviction
strategy, sorting IP addresses into buckets by combining
the IP of the sending node along with the IP address in
the message itself. Recent work has shown this mecha-
nism to be susceptible as well due to the fact that attack-
ers get nodes to evict IP addresses from their buffer [Heil-
man et al., 2015]. There are two approaches used in iso-
lation attacks: Sybil attacks [Douceur, 2002] in which
attackers create many identities and thus increase their
chance of getting connections and Eclipse attacks [Singh
and others, 2006] wherein the attacker increases the visi-
bility of each of its nodes by advertising his own IP more
aggressively.

In this paper we seek to make the attacker’s job more
difficult. We wish to suggest good behaviors for the
agents in the P2P network that will successfully avoid be-
ing quarantined by attackers, unless the attacker invests
a great deal of resources. In particular our work models
the limited buffer from which agent we can choose con-
nection and suggests ways to manage this buffer. Our
work falls in the general scheme of security games: we
consider the attacker and defenders as rational agents
that seek to maximize their gains (or alternatively min-
imize costs and penalties). We assume that if costs are
sufficiently high, attackers will be discouraged from at-

tacking or unable to corrupt the required resources.
The main idea that we utilize to increase the cost for

the attacker is to take advantage of properties of the
connections to peers to try and pick connections that
are not just Sybils of the attacker, i.e., to pick a set of
nodes that the attacker would be unlikely to control all
at once. We take inspiration from Bitcoin’s P2P for-
mation, and consider the IP subnet mask of the peers.
We assume that once an attacker has purchased an IP
address in some range of IPs it is easy for him to gain
access to other similar IPs. Our peer selection strategy
in this case will tend to be biased towards selecting peers
from many different IP ranges. This affects the way we
should manage the IP addresses’ buffer. Our main result
(Theorem 4) states that we can implement a safety level
strategy for this game, using only a limited amount of
memory, in which the IPs are stored. Our contribution
is thus a practical one.

It is important to note that our model has been created
to defend from attacks on a single node. This is not the
general case: the attacker may try to isolate a specific
subset of nodes. We thus approximate an honest node as
“safe” if it is connected to other honest nodes in the local
sense. Our empirical analysis suggests that the resulting
network graph is well connected and difficult to attack.

The remainder of the paper is structured as follows: In
the next section we briefly review related work, then in
section 2 we define our model of the game and the agents’
memory buffer. Section 3 shows results for the game
without any restrictions on the buffer size. In section 4
we restrict the size of the memory buffer, and derive the
safety level strategies for the defender. We conclude and
discuss future work in Section 6.

1.1 Related Work

Work by Douceur [2002] was the first to expose the prob-
lem of multiple identities (Sybils) in P2P systems with
no strong identities. Many such systems have indeed
been shown to be vulnerable to such attacks [Castro et
al., 2002; Urdaneta et al., 2011].

Bitcoin, a P2P currency system [Nakamoto, 2008] was
in fact completely designed to work as an open system
with no strong identities. Its overlay formation, however,
is still susceptible to attacks [Heilman et al., 2015].

Another approach to defense from Sybils was taken
up by ’SybilGuard’ [Yu et al., 2006], where peers utilize
a social network to form their connections (Sybils are
assumed to have few connections to honest participants
in this setting). Unfortunately, most settings do not have
this additional network of relations between peers to use
for overlay formation.

Modern botnets are also known to be structured as
P2P networks and their susceptibility to such attacks has
been used to attack the botnets themselves [Andriesse
and Bos, ; Rossow et al., 2013].

The approach of modeling the interaction between at-
tackers and defenders using game theoretic tools is well
established in artificial intelligence [Tambe, 2011]. A line
of work on security games deals with several variants of

such problems. These include the ARMOR project for
security at airports [Pita et al., 2008], transportation
networks [Tsai et al., 2009], and Patrolling [Basilico et
al., 2009].

2 Model
We assume the attacker wishes to separate the defender
node from all other honest nodes. We model this as
a game between the defender and the attacker. The
first model we examine, assumes (unrealistically) that
defender knows all nodes in the “universe” V , and is
essentially unrestricted by memory considerations. We
later use this as a building block for the second model
in which the defender has a limited memory buffer.

2.1 Preliminaries
let S1, S2 be the strategy sets of players 1, and 2 cor-
respondingly. Let U : S1 × S2 → R be the utility of
player 1 in the game, and assume player 2 has utility
−U (this is a 2-player zero-sum game). Recall that in a
2-player game with strategies S1, S2, and utility U the
strategy profile (s1, s2) for s1 ∈ S1 and s2 ∈ S2 is called
a Nash-equilibrium iff ∀s ∈ S1,U(s, s2) ≤ U(s1, s2) and
∀s ∈ S2,U(s1, s) ≥ U(s1, s2).

Similarly, strategy s1 ∈ S1 is called an L-safety-level
strategy iff ∀s2 ∈ S2,U(s1, s2) ≥ L (a similar definition
can be stated for player 2).

Recall that in a 2-player zero-sum game the Nash equi-
librium (possibly in mixed strategies) is also the max-
min solution of the game. This implies that it is com-
prised of safety level strategies for both players.

2.2 The Limitless-Buffer Game
Denote V as the set of peers (either honest or those
owned by the attacker) in the network. Let H be the
number of connections the defender creates. We assume
the attacker can corrupt or acquire a subset S of nodes
from the universe V at a cost that we denote by C(S).
C : 2V → R. We further assume that the attacker gains
some value Watt from a successful attack against the de-
fender (and that the defender suffers this as a loss).

The 2-player zero-sum game between the attacker and
defender is defined as follows: The defender’s strategy
space S1 contains possible sets of nodes that it may
connect to. S1 = {U ⊂ V : |U | = H}. The at-
tacker’s strategy space S2 contains subsets of the uni-
verse V that he chooses to corrupt: S2 = 2V . The
attack is considered successful iff the attacker owns all
nodes the defender selected. The utility function is thus

U(s1, s2) =

{
C(s2) if s1 6⊂ s2
C(s2)−Watt if s1 ⊂ s2

We will usually consider the game with mixed-strategy
σ1 ∈ ∆S1 , σ2 ∈ ∆S2 and assume players maximize their
expected utility:

U(σ1, σ2) =
∑
U∈S2

σ2
UC(U)−Watt

∑
U∈S2,V ∈S1

σ1
V σ

2
UδV⊂U

in the above σkU is the probability that player k chooses
the subset U ∈ Sk. δU⊂V is 1 if U ⊂ V , 0 otherwise.

2.3 The Restricted-Buffer Scenario

We wish to defend P2P networks in realistic settings so
we must take buffers and limited knowledge of the world
into account. We thus define the following refinement
of the game: We assume that at any point in time the
defender can only maintain a set of potential peers in
his buffer. Let B denote the buffer size (the number
of nodes whose information can be saved). The agent
receives a stream of announcements about nodes from
which it picks which ones are to be stored in the buffer.
We assume honest nodes are advertised at least once in
each time period of length T (attacker nodes may be up-
dated more frequently, as is often the case during eclipse
attacks). If a node’s details are stored in the buffer, and
the buffer is full, a different stored record must be evicted
first. The node then chooses its connections from the set
of nodes whose records are held in the buffer.

Each node should specify an algorithm R that imple-
ments the functionality that decides, only by the peers’
cost and unique identity (the only revealed information),
which node records to save or evict from the buffer. As
the defender, we try to find R that maximizes the mini-
mum amount of resources that an attacker should invest
to successfully attack.

The cost of corrupting nodes As a main example,
we assume that acquiring an IP costs cnew and that every
further IP from that range is cheaper and costs cnode.
Mark DU := # masks in subset U . Then C(U) = cnew ·
DU + cnode × |U |.

3 Analysis with an Unrestricted Buffer

In this section we show results for the setting in which
the nodes in V are known to all.

The following lemma shows that it is better for the
defender to err on the side of over-estimating the damage
from an attack:

Theorem 1. Let UWi
be the utility of the game in which

a successful attack causes Wi damage. If (σ1, σ2) is
a Nash equilibrium in the game with W1 and W2 ≤
W1, then σ1 is a UW1(σ1, σ2)-safety level in UW2 , i.e.,
∀σ̄2 UW2(σ1, σ̄2) ≥ UW1(σ1, σ2)

Proof. UW2
(σ1, σ̄2) =∑

U∈S2

σ̄2
UC(U)−W2

∑
U∈S2,V ∈S1

σ1
V σ̄

2
UδV⊂U ≥∑

U∈S2

σ̄2
iC(U)−W1

∑
U∈S2,V ∈S1

σ1
V σ̄

2
UδV⊂U =

UW2
(σ1, σ̄2) ≥ UW1

(σ1, σ2)

The last step is because (σ1, σ2) is an equilibrium.

Next, we observe that Nash equilibria come in one of
two forms: either the attacker corrupts no nodes at all or
he places some small probability to ”cover” every node.

Lemma 1. For any Nash equilibrium (σ1, σ2) in the
game it holds that either ∀K σ2

K = 0, or alternatively,
∀U ∈ S1 ∃K s.t. U ⊆ K and σ2

K 6= 0.

Proof. If exists U ∈ S1 s.t. for all K with U ⊆ K holds
σ2
K = 0, then the attacker never answers the defender’s

strategy to play pure U (denote it with S1
U). Therefore,

U(σ1, σ2) ≥ U(S1
i , σ

2) ≥ 0 (the first inequality follows by
the Nash equilibrium definition). Clearly 0 = U(σ1, 0) ≥
U(S1

i , σ
2) therefore U(σ1, σ2) = 0.

We now show that in any Nash equilibrium, the de-
fender places more probability on selecting more expen-
sive sets of nodes (from the attacker’s support).

Lemma 2. Let (σ1, σ2) be Nash equilibrium. Then
∀A,B ∈ supp(σ2):

C(A) ≤ C(B)⇐⇒
∑

U⊆A∩S1

σ1
U ≤

∑
V⊆B∩S1

σ1
V

Proof. Reminder: If v is the value of the game U and(
σ1, σ2

)
is a Nash equilibrium, then any pure strategy

from the support can be used to achieve it. I.e. if σ2
A 6= 0

(for some A ⊂ V), then U
(
σ1, S2

A

)
= v.

v = U
(
σ1, S2

A

)
= C(A)−Watt ·

∑
U⊂A∩S1

σ1
U

v = U
(
σ1, S2

B

)
= C(B)−Watt ·

∑
V⊂B∩S1

σ1
V

The first step in each row is because A,B ∈ supp(σ2),
the second is directly from the definition of U . Therefore

C(A)− C(B) = Watt

(∑
U⊂A∩S1

σ1
U −

∑
V⊂B∩S1

σ1
V

)

So C(A) ≤ C(B)→
∑

U⊂A∩S1

σ1
U ≤

∑
V⊂B∩S1

σ1
V

The next corollary is simple, but it contains an insight
that we will use later:

Corollary 1. The probability of choosing a group of
peers is determined by the attacker’s support, i.e.,
∀
(
σ1, σ2

)
∈ ∆S1 ×∆S2 equilibrium, ∀A,B ∈ supp(σ2),

C(A) = C(B)⇐⇒
∑

U⊆A∩S1

σ1
U =

∑
V⊆B∩S1

σ1
V

Reducing the defender’s strategy space
In this section, our goal will be to reduce the base of the
defender’s strategies space so we can decrease the num-
ber of nodes we should remember in the buffer, while
achieving the same game value.
First, we will define an equivalence relation on S1 and
show that it preserves the game value. Our equiva-
lence relation is defined over sets of nodes A,B ∈ S1

by A ∼ B ⇐⇒ ∀(σ1, σ2) Nash equilibrium in U ,
σ1
A = σ1

B . We will denote this equivalence class with [A].

Using those equivalence classes as the new defender’s

strategies space (Ŝ1) we can define a new game (Û).
Intuitively, in this game, the defender does not dis-

tinguish between different connections’ sets in the same
equivalence class, so he choses one uniformly. This def-
inition can be also related to the cost to corrupt sets of
nodes in any attacker’s Nash strategy (as in Corollary 1).

Formally: let [A] be defender’s strategy in Û ,

U attacker strategy, then define: Û([A], U) =∑
B∈[A] U(B,U)

|[A]| = C(U)−Watt ·
∑

B∈[A] δB⊂U

|[A]| .

Define a mapping between the defender’s strategies in
both games: T : ∆S1 → ∆

Ŝ1 by
(
T (σ)

)
[A]

=
∑
b∈[A] σB

and T−1 : Û → U by
(
T−1(σ̂)

)
A

=
σ̂[A]

|[A]|

The following results show the connection between the
two games:

Lemma 3. ∀(σ̂1, σ2) ∈ ∆
Ŝ1X∆S2 holds that

Û(σ̂1, σ2) = U(T−1(σ̂1), σ2)

Proof. First note that:∑
U⊂V

∑
[A]∈Ŝ1

σ̂1
[A]σ

2
U

∑
B∈[A] δB⊂U

|[A]|
=

∑
U⊂V

∑
[A]∈Ŝ1

∑
B∈[A]

σ̂1
[A]σ

2
U

δB⊂U
|[A]|

=

∑
U⊂V

∑
[A]∈Ŝ1

∑
B∈[A]

(
T−1(σ̂1)B · |[A]|

)
σ2
U

δB⊂U
|[A]|

=

∑
U⊂V

∑
[A]∈Ŝ1

∑
B∈[A]

T−1(σ̂1)Bσ
2
UδB⊂U =

∑
U⊂V

∑
B∈S1

T−1(σ̂1)Bσ
2
UδB⊂U

Where the second step is T−1(σ̂1)B =
σ̂1

[A]

|[A]| .

Then: Û(σ̂1, σ2) =

∑
U⊂V

σ2
UC(U)−Watt

∑
U

∑
[A]

σ̂1
[A]σ

2
U

∑
B∈[A] δB⊂U

|[A]|
=

∑
U⊂V

σ2
UC(U)−Watt

∑
U

∑
B∈S1

T−1(σ̂1)Bσ
2
UδB⊂U =

U(T−1(σ̂1), σ2).

The next lemmas are easing the proof of Theorem 2:

Lemma 4. If (σ1, σ2) is Nash equilibrium in U , then

Û(T (σ1), σ2) = U(σ1, σ2).

Proof. Note that σ1
B =

T (σ1)[A]

|[A]| for all B ∈ [A] (because

this is a Nash equilibrium), therefore:∑
U⊂V

∑
B∈S1

σ1
Bσ

2
UδB⊂U =

∑
[A]∈Ŝ1

(∑
B∈[A]

σ1
B

(∑
U⊂V

σ2
UδB⊂U

))
=

∑
[A]∈Ŝ1

T (σ1)[A]

|[A]|
∑
B∈[A]

∑
U∈V

σ2
UδB⊂U =

∑
U⊂V

∑
[A]∈Ŝ1

T (σ1)[A]σ
2
U

∑
B∈[A] δB⊂U

|[A]|

Using this equation in the game utility function as be-
fore, and get: Û(T (σ1), σ2) = U(σ1, σ2)

Lemma 5. It holds that ∀σ̂1, T (T−1(σ̂1)) = Id.
Moreover, if (σ1, σ2) Nash equilibrium in U , then

T−1(T (σ1)) = Id too.

Clear proof.

Theorem 2. Nash equilibria in both games have the
same game value, and if (σ1, σ2) is a Nash equilibrium

in U then (T (σ1), σ2) is a Nash equilibrium in Û , and

holds that Û(T (σ1), σ2) = U(σ1, σ2).

Proof. At first, we will show that the T function saves
the property of Nash equilibrium. Let (σ1, σ2) be a Nash
equilibrium in U , we want to prove that (T (σ1), σ2) is

Nash equilibrium in Û . On the one hand, ∀σ′1 ∈ Ŝ1,

Û(σ′1, σ2) = U(T−1(σ′1), σ2) ≤ U(σ1, σ2) = Û(T (σ1), σ2)

where the first equality is Lemma 3, the second is the def-
inition of Nash equilibrium in U , and the last is Lemma
4. On the other hand, ∀σ′2 ∈ S2

Û(T (σ1), σ′2) = U(σ1, σ′2) ≥ U(σ1, σ2) = Û(T (σ1), σ2)

where the first equality is Lemmas 5 and 3.
Then we proved that this is a Nash equilibrium. And

clearly, they have the same value duo to Lemma 4:
U(σ1, σ2) = Û(T (σ1), σ2)

Corollary 2. The defender’s safety level l in Û can be
translated to safety level ≥ l in U

Proof. Let σ̂1 ∈ Ŝ1 be a safety level l in Û . We should

prove that T−1(σ̂1) is safety level in U : indeed ∀σ2 ∈ S2,

U(T−1(σ̂1), σ2) = Û(σ̂1, σ2) ≥ l Where the equality on
the left is Lemma 3, and the inequality on the right is
the definition of safety level l in Û .

4 Buffer-Restricted Implementation
We now turn to the scenario where buffers are restricted.
We begin by defining new equivalence relation on V: two
nodes u, v are equivalent if for any set of other nodes
A ⊂ V , adding u to A results in a strategically equivalent
set to A ∪ {v}. Formally: ∀v, u ∈ V, u
 v ⇐⇒ ∀A ⊂

V, |A| = H − 1 holds A∪ {u} ∼ A∪ {v}. We will denote
the equivalence class of node v ∈ V with [v]
, and the

equivalence classes space with V̂ := {[v]
|v ∈ V }.
In general [{v1, · · · , vH}] 6= [v1]
 × · · · × [vH]
 and

generally there is no containment in either direction (See
lemma 8 for a specific interesting property).

4.1 The Buffer Management Algorithm

In this section we propose a concrete way of implement-
ing the buffer management algorithm R, that utilizes a
Bloom filter.

A Bloom filter [Bloom, 1970] is a data structure that
uses hash-coded information to encode a set of items.
It allows for some small fraction of errors in member-
ship tests (false positives). The error rate can be low-
ered by increasing memory usage. In our paper, we use
this method to avoid nodes that we already saw and
accepted including those evicted from the buffer. We
use the Bloom filter’s deterministic answer to completely
avoid known nodes, and accept a small fraction of false-
positive answers on new nodes.

First, let us see the main theorem of this section, that
discusses the benefits of well-implemented buffer man-
agement algorithms. Let Uni(B) denote the uniform
distribution on some set B.

Theorem 3. Assume that we have some buffer manage-
ment algorithm R that satisfies the conditions that were

presented in subsection 2.3 and in addition ∀A ∈ Ŝ1,
Uni([A]∩R(v1, · · · , vk)) ∼ Uni([A]∩{v1, · · · , vk}) (i.e.
choosing a connection set uniformly in [A] from the set
of nodes in the buffer, is the same as choosing uniformly
from the entire universe).

Then we can implement any Nash strategy or safety

level on a restricted buffer of size O(H · |Ŝ1|) with the
same value as the game on limitless buffer.

Proof. Store H nodes for any equivalence class in Ŝ1.

Using the additional given property, ∀[A] ∈ Ŝ1 choosing
a connection set uniformly in [A] from the set of nodes
in the buffer, is the same as choosing uniformly from the
entire universe. Therefore, we can play any strategy σ̂1

in the game Û , by uniformly selecting a group in the
buffer that is in the chosen equivalence class.

Therefore, we implement a choice that is equivalent

to the defender’s strategy space Ŝ1 in the game Û . Let
σ2 be an attacker strategy, then the value of the game
that was played in this buffer-limited world is exactly
Û(σ̂1, σ2). So finally, if this is a Nash equilibrium strat-
egy, then U(T−1(σ̂1), σ2) is also Nash equilibrium in U
(Theorem 2). If σ̂1 is a Û safety level then it is also a U
safety level (Corollary 2).

We consider the following algorithm: Let EG be the
equivalence classes (”buckets”) in our game, and let
bucket size be the number of nodes that each bucket
can hold, and B ∈ N the bytes size of the Bloom filter.

Initialize:
BF := Bloom-filter buffer of size B.
∀ bucket ∈ EG: bucket history[bucket]=0
∀ bucket ∈ EG: buckets[bucket]=Φ

for n := new input node do
b := n.bucket
bucket history[b] ++
if not BF.contains(n) and Prob(bucket size

bucket history[b])

then
if buckets[b].isFull then

buckets[b].uniformlyRemoveOne
end
buckets[b].add(n)

end
BF.add(n)

end
Algorithm 1: R algorithm for EG

Lemma 6. The above algorithm with EG = Ŝ1, B =∞1

satisfies the conditions of theorem 3.

Proof. We should prove that for any equivalence class
in the defender’s strategy space (”bucket”), choose uni-
formly a node from the buffer has an equal probability to
choose it uniformly from the entire input. Assume that
we make the choice after we saw v1, · · · , vl nodes from
this bucket. We need to prove that there is a chance
of 1

l to choose any node. And indeed, ∀j ∈ {1, · · · , l},
holds that it inserted into the buffer with probability
H
j and it still in the buffer after the next input in

probability (1 − H
j+1

1
H) = j

j+1 , so after the l’th input:
j
j+1

j+1
j+2 · · ·

l−1
l = j

l , therefore the total probability of the

node vj to be in the bucket after l inputs is simply H
l .

Therefore, the probability of choose any vj uniformly
from the buffer is 1

l , which is exactly the same probabil-
ity as chose it over all the input (v1, · · · , vl).

Continuous games: Refreshing the Buffer and
the Bloom Filter

The algorithm above works for a single ‘round‘ of choos-
ing the connections, which is not enough for a contin-
uous game, where nodes in the network come and go
frequently. To overcome this difficulty, we can define
the network protocol to propagate live nodes every T
time units, and store two copies of the buffer and filter
that reset alternately every 2T time units. This method
gives us the ability to remember IPs from a window of
T , which is the full available information on the network
(as we’ve assumed honest nodes send their IP address to
others at least once every T).

Additionally, we can use the above algorithm with
buckets size = 1 because we assume that we need to
choose the connection set once, and that all honest nodes
will be available to answer. In more realistic scenarios in
which churn is an issue, and honest nodes may be offline

1a Bloom filter with buffer size ∞ is optimal

at times, we suggest using larger bucket sizes to preserve
a sufficiently large set of alternative connections.

In the full version of the paper, we prove that even if
some IPs in the bucket can not be selected, e.g. if they
are stale, selecting uniformly from the remaining nodes
in the bucket is equivalent again to a uniform selection.

4.2 IP masks

For the rest of the paper we focus on the IP mask im-
plementation for the restricted buffer case. A similar
treatment applies to other cost functions.

Lemma 7. If v1, v2 are nodes in the same mask then
[v1]
 = [v2]
, i.e., ∀A ⊂ V with |A| = H − 1 and for
all (σ1, σ2) Nash equilibrium holds σ1

A∪{v1} = σ1
A∪{v2}.

Proof. Assume with contradiction that there exist two
nodes v1, v2 ∈ V from the same mask that are not in the
same equivalence class. I.e. there exists A ⊂ V, |A| =
H − 1 where A1 := A∪ {v1} and A2 := A∪ {v2} are not
in the same equivalence class. Therefore, exists Nash
equilibrium where the defender choose (WLOG) A1, A2

in probabilities α1 < α2. For the attacker, the cost of
corrupting groups A1 and A2 is identical because v1 and
v2 are on the same mask. Therefore, an attacker’s BR
is to play strategy σ2 where

∑
A1⊂B σ

2
B >

∑
A2⊂B σ

2
B

(the cost is identical but the value is higher). Therefore,
the defender’s best response is to choose A2 in greater
probability than A1. I.e. the defender’s best response
is to change his strategy, therefore this is not a Nash
equilibrium, and our first assumption is false.

The following lemma shows that we can save represen-
tatives from each equivalence class.

Lemma 8. For any defender’s strategy A =
{v1, · · · , vH} ∈ S1, holds that: [v1]
×· · ·× [vH]
 ⊆ [A]
I.e. we can replace any node with a node in the same
mask, and still be in the same strategy equivalence class.

Proof. Our cost function does not distinguish between
two nodes in the same mask, we may switch any node
with another one in the same mask, and it will cost
the same =⇒ Choosing them unequally will ease the
attacker’s game (according to Lemma 7) =⇒ We will
choose those two groups with the same probability.

As a direct consequence of the previous lemma we de-
rive of our main results:

Theorem 4. We can implement the IP mask game on a
limited buffer, with the same game value as the limitless-
buffer game.

Proof. On one hand, we can implement any de-
fender strategy [v1, · · · , vH] ∈ Ŝ1 using the classes
[v1]
, · · · , [vH]
 (Lemma 8). On the other hand, we can

implement any [v]
 ∈ V̂ using a set of masks (Lemma 7).
Therefore, by using the masks as buckets, we can imple-
ment any defender strategy in Ŝ1.

4.3 Safety level

In this subsection, we define the game Ū wherein we
assume that the defender can choose one node per mask.
This restriction on the defender’s strategy space gives us
a good safety level for the original game, while making
computation of the strategy easier.

Note that the defender should not differentiate be-
tween two masks that have the same number of nodes
(in any Nash equilibrium, masks with the same num-
ber of nodes are selected with the same probability).
Therefore, the strategic equivalence classes are defined
by mask size: the equivalence class of {v1, · · · vH} ⊂ V
is all the set {u1, · · ·uH} where for all i, the nodes vi, ui
are in masks with the same size.

Therefore, define the equivalence classes game Ū : Al-
low the defender to choose only one connection in each
mask-size. In mask of size a, denote with Ma the number
of nodes, and with avga = cnew+a·cnode

a the average cost
of node. Then we can bound from below the attacker’s
cost of corrupting xa ∈ N nodes with xa · avga, and the
fraction of corrupted nodes with xa

Ma
.

We determine the defender’s strategy: choose the
connections with probability related to the avg val-
ues. I.e. select the mask-size a with probability pa :=
a·Ma·avga∑∞
i=1Mi·avgi , and choose a single node uniformly over all

the masks.
Denote ya ∈ {0, 1} as the defender’s probability of

choosing from mask-size a or not, and x′a as xa if xa 6= 0

or Ma(1−E(ya))
E(ya) otherwise. The game utility is: 2

Ū(x̄, ȳ) =
∑
i

xi · avgi −Watt ·
∏
a

(
x′a
Ma

)ya
=

∑
i

xi · avgi −Watt ·
∏
a

E(ya)

(
x′a
Ma

)
Note that ya are Bernoulli distributed parameters. Let

I = [i1, · · · , ir] to be a list of indexes of mask-sizes, and
denote by pI the probability to choose from mask of size

iI[1], then iI[2], and so on. Then pI =
r∏
j=1

pI[j]

1−
∑j−1

l=1 pI[l]

Therefore, we get ya ∼ B
(∑

|I|=H
s.t. a∈I

pI

)
, and then:

E(Ū) =
∑
i

xi · avgi −Watt

∏
a

 ∑
|I|=H
s.t. a∈I

pI
x′a
Ma

=
∑
i

xi · avgi −Watt

∏
a

 ∑
|I|=H
s.t. a∈I

pI
Ma

 ·∏
a

x′a

2according to our assumption it’s true because yi ∈ {0, 1}.
Otherwise it’s just an upper bound.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

nu
m

be
r

of
 n

od
es

number of masks

Figure 1: Number of subnet masks\16 in the Bitcoin
network (data crawled at September 2015).

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Mask size chosen

fr
ac

io
n

ch
oo

se
n

Figure 2: Fraction of times that this mask-size is chosen.
Calculated on Bitcoin’s network, with H = 8, cnew

cnode
= 10

(sum of all fraction should be 8).

5 Evaluations

5.1 Evaluation of Ū
To retrieve an actual value for the calculation above,
we examine the behavior of the Bitcoin network. We
collected a snapshot of all the nodes that connected to
the network (including the the IPs appearing on site
blockchain.info). From this data we collected statistics
on the number of masks, and distribution of nodes within
each one (see Figures 1).

We calculated the value of the Bernoulli parameters
(Figure 2), and concluded the following term, which is
multiplied in the expected utility formula by the profit

from the attack:
∏
a

(∑
|I|=H
s.t. a∈I

pI
Ma

)
≈ 4.357 · e−51.

Therefore only attacks that are highly profitable can de-
rive a negative game value for the defender.

5.2 Evaluating the safety level for Bitcoin

We will use Corollary 2 to deduce the solution for the
more general game U . Let m1, · · · ,mk be the mask sizes
and ŷa the probability to choose a connection from the
a’th mask. Due to the cost function’s definition, for all
i, j holds mi = mj ⇒ ŷi = ŷj , therefore ŷa =

yma

|{i|mi=S}| .

From here, we derive the probability of choosing IPs
from each mask (Figure 3). When we switch back to the

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

0.08

0.1

mask index

P
ro

ba
bi

lit
y

to
 c

ho
os

e

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

M
as

k
si

ze

Figure 3: Probability to choose a node from a mask.

original game formulation:

E(U) =
∑
l

xl·avgl−Watt

∏
l

 ∑
|I|=H

s.t. ml∈I

pI
Mml

∏
l

x′l

And finally:
∏
l

(∑
|I|=H

s.t. ml∈I

pI
Mml

)
≈ 1.785 · e−8807

Therefore the attacker needs to invest great amount of
resources to gain a negative game value.

5.3 Comparing to a Naive Benchmark

In this section we would like to compare our results to
a naive benchmark, where each node chooses its connec-
tions uniformly from the buffer, and the buffer is chosen
uniformly from the whole network. In the first bench-
mark (the most naive), we assume that the node may be
subject to repeated transmissions of the same IP, which
it can not detect unless that IP is already in the buffer.
We assume that the buffer size is the current buffer size
of the Bitcoin’s nodes (= 20480 unique addresses). For
the second benchmark, we assume uniform selection of
IPs, but with an accompanying Bloom filter to filter out
re-transmissions. We consider a network with the pro-
portion of masks that is derived from Bitcoin’s topology.
Considering our strategy, an attacker’s response to our
strategy is to create nodes in a way where pa is equal
for any mask a. Then, we calculate the probability to
be successfully attacked as a function of the attacker’s
investment. The results are shown in figure 4 along with
the probability that our own algorithm is successfully
attacked. 3

6 Future Work & Conclusions
In this work we explored a game theoretic model for
P2P network formation. Our results indicate that given
some model for the cost of nodes for an attacker it is
possible to select each peer’s connections so as to reduce
the likelihood that it is isolated by an attacker.

3The ‘spike‘ in the graph caused by the number of masks
exists (when the attacker corrupted nodes in all the masks).
In this case, the probability to successful attack is the same
as in the naive approach.

https://blockchain.info/

100 101 102 103 104 105 106 107

Invested Money

0.0

0.2

0.4

0.6

0.8

1.0
P
ro
b
a
b
ili
ty
 t
o
 S
u
cc

e
ss
fu
l
A
tt
a
ck

naive
Second benchmark
Our Strategy

Figure 4: The probability to for a successful attack by
money that should be invested (cnew

cnode
= 10, H = 8).

Future work should extend the model to games that
are not zero-sum, and to better account for attackers
trying to isolate large chunks of the network (simulations
we conducted still show that the strategies that protect
single nodes are also good for the network as a whole).

Another possible extension is to consider different in-
formation about peers (in addition to IP mask) such as
round trip time and other network features, or to aug-
ment nodes with additional information that will be hard
for an attacker to fake.

References
[Andriesse and Bos,] Dennis Andriesse and Herbert

Bos. An analysis of the Zeus peer-to-peer protocol.
Technical report.

[Basilico et al., 2009] Nicola Basilico, Nicola Gatti, and
Francesco Amigoni. Leader-follower strategies for
robotic patrolling in environments with arbitrary
topologies. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 57–64. International Foun-
dation for Autonomous Agents and Multiagent Sys-
tems, 2009.

[Bloom, 1970] Burton H Bloom. Space/time trade-offs
in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

[Castro et al., 2002] Miguel Castro, Peter Druschel, Ay-
alvadi Ganesh, Antony Rowstron, and Dan S Wal-
lach. Secure routing for structured peer-to-peer over-
lay networks. ACM SIGOPS Operating Systems Re-
view, 36(SI):299–314, 2002.

[Douceur, 2002] John R Douceur. The sybil attack. In
Peer-to-peer Systems, pages 251–260. Springer, 2002.

[Heilman et al., 2015] Ethan Heilman, Alison Kendler,
Aviv Zohar, and Sharon Goldberg. Eclipse attacks on
bitcoins peer-to-peer network. 2015.

[Nakamoto, 2008] Satoshi Nakamoto. Bitcoin: A peer-
to-peer electronic cash system. Consulted, 1(2012):28,
2008.

[Norberg, 2009] Arvid Norberg. utorrent transport pro-
tocol. BitTorrent Extension Protocol, 29, 2009.

[Pita et al., 2008] James Pita, Manish Jain, Janusz
Marecki, Fernando Ordóñez, Christopher Portway,
Milind Tambe, Craig Western, Praveen Paruchuri,
and Sarit Kraus. Deployed armor protection: the ap-
plication of a game theoretic model for security at the
los angeles international airport. In Proceedings of
the 7th international joint conference on Autonomous
agents and multiagent systems: industrial track, pages
125–132. International Foundation for Autonomous
Agents and Multiagent Systems, 2008.

[Rossow et al., 2013] Christian Rossow, Dennis An-
driesse, Tillmann Werner, Brett Stone-Gross, Daniel
Plohmann, Christian J Dietrich, and Herbert Bos.
Sok: P2pwned-modeling and evaluating the resilience
of peer-to-peer botnets. In Security and Privacy (SP),
2013 IEEE Symposium on, pages 97–111. IEEE, 2013.

[Singh and others, 2006] Atul Singh et al. Eclipse at-
tacks on overlay networks: Threats and defenses. In
In IEEE INFOCOM. Citeseer, 2006.

[Tambe, 2011] Milind Tambe. Security and game theory:
algorithms, deployed systems, lessons learned. Cam-
bridge University Press, 2011.

[Tsai et al., 2009] Jason Tsai, Shyamsunder Rathi,
Christopher Kiekintveld, Fernando Ordonez, and
Milind Tambe. Iris - a tool for strategic security al-
location in transportation networks. In The Eighth
International Conference on Autonomous Agents and
Multiagent Systems - Industry Track, 2009.

[Urdaneta et al., 2011] Guido Urdaneta, Guillaume
Pierre, and Maarten Van Steen. A survey of dht se-
curity techniques. ACM Computing Surveys (CSUR),
43(2):8, 2011.

[Yu et al., 2006] Haifeng Yu, Michael Kaminsky,
Phillip B Gibbons, and Abraham Flaxman. Sybil-
guard: defending against sybil attacks via social
networks. ACM SIGCOMM Computer Communica-
tion Review, 36(4):267–278, 2006.

	Introduction
	Related Work

	Model
	Preliminaries
	The Limitless-Buffer Game
	The Restricted-Buffer Scenario

	Analysis with an Unrestricted Buffer
	Buffer-Restricted Implementation
	The Buffer Management Algorithm
	IP masks
	Safety level

	Evaluations
	Evaluation of
	Evaluating the safety level for Bitcoin
	Comparing to a Naive Benchmark

	Future Work & Conclusions

